20 research outputs found

    Metal-free, polyether-mediated H_2-release from ammonia borane: roles of hydrogen bonding interactions in promoting dehydrogenation

    Get PDF
    Polyetheral additives were found to be efficient promoters to enhance the rate of H2-release from ammonia borane (AB) at various temperatures. In particular, tetraethylene glycol dimethyl ether (T4EGDE, 29 wt% relative to AB + T4EGDE) exhibited significantly improved activities for AB dehydrogenation, with the material-based hydrogen storage capacity of 10.3 wt% at 125 °C within 40 min. In situ FT-IR spectroscopy indicated the formation of B-(cyclodiborazanyl)amino-borohydride (BCDB), borazine, and μ-aminodiborane as gaseous byproducts. In addition, 11B nuclear magnetic resonance (NMR) spectroscopy further revealed that diammoniate of diborane (DADB) was initially formed to give polyaminoborane as liquid and/or solid spent-fuel, consistent with previous reports. Density Functional Theory (DFT) calculations suggested that hydrogen bonding interactions between AB and a polyetheral promoter initially played an important role in increasing the reactivity of B–H bonds of AB by transferring electron density from oxygen atoms of the promoter into B–H bonds of AB. These partially activated, hydridic B–H bonds were proposed to help promote the formation of diammoniate of diborane (DADB), which is considered as a reactive intermediate, eventually enhancing the rate of H2-release from AB. In addition, our in situ solid state 11B magic angle spinning (MAS) NMR measurements further confirmed that the rate of DADB formation from AB with a small quantity of T4EGDE was found to be much faster than that of pristine AB even at 50 °C. This metal-free method for H2-release from AB with an added, small quantity of polyethers would be helpful to develop feasible hydrogen storage systems for long-term fuel cell applications

    Electrically Bistable Properties of Layer-by-Layer Assembled Multilayers Based on Protein Nanoparticles

    No full text
    Electrochemical properties of redox proteins, which can cause the reversible changes in the resistance according to their redox reactions in solution, are of the fundamental and practical importance in bioelectrochemical applications. These redox properties often depend on the chemical activity of transition metal ions as cofactors within the active sites of proteins. Here, we demonstrate for the first time that the reversible resistance changes in dried protein films based on ferritin nanoparticles can be caused by the externally applied voltage as a result of charge trap/release of Fe<sup>III</sup>/Fe<sup>II</sup> redox couples. We also show that one ferritin nanoparticle of about 12 nm size can be operated as a nanoscale-memory device, and furthermore the layer-by-layer assembled protein multilayer devices can be extended to bioinspired electronics with adjustable memory performance <i>via</i> molecular level manipulation

    Hydrophobic Nanoparticle-Based Nanocomposite Films Using <i>In Situ</i> Ligand Exchange Layer-by-Layer Assembly and Their Nonvolatile Memory Applications

    No full text
    A robust method for preparing nanocomposite multilayers was developed to facilitate the assembly of well-defined hydrophobic nanoparticles (<i>i.e.</i>, metal and transition metal oxide NPs) with a wide range of functionalities. The resulting multilayers were stable in both organic and aqueous media and were characterized by a high NP packing density. For example, inorganic NPs (including Ag, Au, Pd, Fe<sub>3</sub>O<sub>4</sub>, MnO<sub>2</sub>, BaTiO<sub>3</sub>) dispersed in organic media were shown to undergo layer-by-layer assembly with amine-functionalized polymers to form nanocomposite multilayers while incurring minimal physical and chemical degradation of the inorganic NPs. In addition, the nanocomposite multilayer films formed onto flat and colloidal substrates could directly induce the adsorption of the electrostatically charged layers without the need for additional surface treatments. This approach is applicable to the preparation of electronic film devices, such as nonvolatile memory devices requiring a high memory performance (ON/OFF current ratio >10<sup>3</sup> and good memory stability)

    Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent

    No full text
    Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation

    Glioblastoma-Derived Exosomes as Nanopharmaceutics for Improved Glioma Treatment

    No full text
    The use of cancer-derived exosomes has been studied in several cancer types, but the cancer-targeting efficacy of glioma-derived exosomes has not been investigated in depth for malignant glioblastoma (GBM) cells. In this study, exosomes were derived from U87MG human glioblastoma cells, and selumetinib, a new anticancer drug, was loaded into the exosomes. We observed the tropism of GBM-derived exosomes in vitro and in vivo. We found that the tropism of GBM-derived exosomes is in contrast to the behavior of non-exosome-enveloped drugs and non-GBM-specific exosomes in vitro and in vivo in an animal GBM model. We found that the tropism exhibited by GBM-derived exosomes can be utilized to shuttle selumetinib, with no specific targeting moiety, to GBM tumor sites. Therefore, our findings indicated that GBM-derived exosomes loaded with selumetinib had a specific antitumor effect on U87MG cells and were non-toxic to normal brain cells. These exosomes offer improved therapeutic prospects for glioblastoma therapy

    Manganese (II) Complex of 1,4,7-Triazacyclononane-1,4,7-Triacetic Acid (NOTA) as a Hepatobiliary MRI Contrast Agent

    No full text
    Magnetic resonance imaging (MRI) is increasingly used to diagnose focal and diffuse liver disorders. Despite their enhanced efficacy, liver-targeted gadolinium-based contrast agents (GBCAs) raise safety concerns owing to the release of toxic Gd3+ ions. A π-conjugated macrocyclic chelate, Mn-NOTA-NP, was designed and synthesized as a non-gadolinium alternative for liver-specific MRI. Mn-NOTA-NP exhibits an r1 relaxivity of 3.57 mM−1 s−1 in water and 9.01 mM−1 s−1 in saline containing human serum albumin at 3 T, which is significantly greater than the clinically utilized Mn2+-based hepatobiliary drug, Mn-DPDP (1.50 mM−1 s−1), and comparable with that of GBCAs. Furthermore, the in vivo biodistribution and MRI enhancement patterns of Mn-NOTA-NP were similar to those of the Gd3+-based hepatobiliary agent, Gd-DTPA-EOB. Additionally, a 0.05 mmol/kg dose of Mn-NOTA-NP facilitated high-sensitivity tumor detection with tumor signal enhancement in a liver tumor model. Ligand-docking simulations further indicated that Mn-NOTA-NP differed from other hepatobiliary agents in their interactions with several transporter systems. Collectively, we demonstrated that Mn-NOTA-NP could be a new liver-specific MRI contrast agent

    Nonsteroidal Anti-Inflammatory Drug Conjugated with Gadolinium (III) Complex as an Anti-Inflammatory MRI Agent

    No full text
    Studies have been actively conducted to ensure that gadolinium-based contrast agents for magnetic resonance imaging (MRI) are accompanied by various biological functions. A new example is the anti-inflammatory theragnostic MRI agent to target inflammatory mediators for imaging diagnosis and to treat inflammatory diseases simultaneously. We designed, synthesized, and characterized a Gd complex of 1,4,7-tris(carboxymethylaza) cyclododecane-10-azaacetylamide (DO3A) conjugated with a nonsteroidal anti-inflammatory drug (NSAID) that exerts the innate therapeutic effect of NSAIDs and is also applicable in MRI diagnostics. Gd-DO3A-fen (0.1 mmol/kg) was intravenously injected into the turpentine oil-induced mouse model, with Gd-DO3A-BT as a control group. In the in vivo MRI experiment, the contrast-to-noise ratio (CNR) was higher and persisted longer than that with Gd-DO3A-BT; specifically, the CNR difference was almost five times at 2 h after injection. Gd-DO3A-fen had a binding affinity (Ka) of 6.68 × 106 M−1 for the COX-2 enzyme, which was 2.1-fold higher than that of fenbufen, the original NSAID. In vivo evaluation of anti-inflammatory activity was performed in two animal models. In the turpentine oil-induced model, the mRNA expression levels of inflammatory parameters such as COX-2, TNF-α, IL-1β, and IL-6 were reduced, and in the carrageenan-induced edema model, swelling was suppressed by 72% and there was a 2.88-fold inhibition compared with the saline group. Correlation analysis between in vitro, in silico, and in vivo studies revealed that Gd-DO3A-fen acts as an anti-inflammatory theragnostic agent by directly binding to COX-2

    The Synthesis, Characterization, Molecular Docking and In Vitro Antitumor Activity of Benzothiazole Aniline (BTA) Conjugated Metal-Salen Complexes as Non-Platinum Chemotherapeutic Agents

    No full text
    Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals to achieve selective and synergistic cytotoxicity. The compounds obtained were characterized by NMR spectroscopy, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The compounds L, MnL, FeL, CoL, and ZnL showed promising in vitro cytotoxicity against cancer cells, and they had a lower IC50 than that of the clinically used cisplatin. In particular, MnL had synergistic cytotoxicity against liver, breast, and colon cancer cells. Moreover, MnL, CoL, and CuL promoted the production of reactive oxygen species in HepG2 tumor cell lines. The lead compound of this series, MnL, remained stable in physiological settings, and docking results showed that it interacted rationally with the minor groove of DNA. Therefore, MnL may serve as a viable alternative to platinum-based chemotherapy
    corecore